Hwamei: A Learning-based Synchronization Scheme for Hierarchical Federated Learning

Tianyu Qi, Yufeng Zhan, Peng Li, Jingcai Guo, and Yuanqing Xia

Tianyu Qi qitianyu@bit.edu.cn

School of Automation Beijing Institute of Technology

July 21, 2023

- 2. Background and Motivation
- 3. The Design of Hwamei

4. Evaluation

5. Conclusion

Development of Edge Computing:

Figure: Edge & Cloud Computing

Figure: Privacy security policy

- Mobile devices continue to generate vast amounts of data.
- The independent storage of data on devices presents challenges for centralized learning.
- There is a growing global emphasis on privacy and security concerns.

FedAvg:

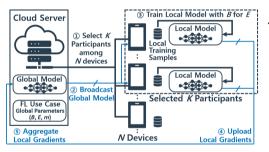


Figure: The design of FedAvg

Training of FedAvg:

- Local training: The model is deployed on devices, utilizing locally available data.
- Cloud aggregation: The model is aggregated on the cloud server.
- Limitation: Frequent model transmissions result in high communication overhead.

Hierarchical Federated Learning:

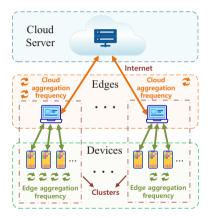


Figure: A synchronization scheme based on HFL

Advantage:

- 1. Large scale: Reduce the communication overhead.
- 2. Low convergence bound.

Challenge:

- 1. Heterogeneity. (System, Data, Communication)
- 2. High energy consumption.
- 3. The aggregation frequency is difficult to determine under 2-layers framework.

2. Background and Motivation

3. The Design of Hwamei

4. Evaluation

5. Conclusion

Hierarchical Federated Learning:

• Local SGD (Device *i*):

$$f(w_i) = \frac{1}{|\mathcal{D}_i|} \sum_{(x,y) \in \mathcal{D}_i} f(w_i, x, y)$$

• Edge aggregation (Edge *j*):

$$w_j^e = \sum_{i=1}^{N_j} \frac{|\mathcal{D}_i| w_i}{\sum_{i=1}^{N_j} |\mathcal{D}_i|}$$

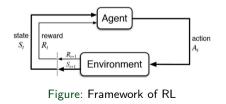
• Cloud aggregation:

$$w = \sum_{j=1}^{M} \frac{\left|\mathcal{D}_{j}\right| w_{j}^{e}}{\sum_{j=1}^{M} \left|\mathcal{D}_{j}\right|}$$

Proximal Policy Optimization:

• PPO algorithm's objective function:

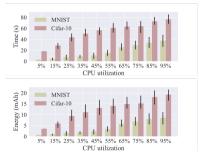
$$\begin{split} J^{\theta'}(\theta) &\approx \sum_{(\boldsymbol{s}_t, \boldsymbol{a}_t)} \min\left(\frac{p_{\theta}\left(\boldsymbol{a}_t \mid \boldsymbol{s}_t\right)}{p_{\theta'}\left(\boldsymbol{a}_t \mid \boldsymbol{s}_t\right)} A^{\theta'}\left(\boldsymbol{s}_t, \boldsymbol{a}_t\right), \\ & \operatorname{clip}\left(\frac{p_{\theta}\left(\boldsymbol{a}_t \mid \boldsymbol{s}_t\right)}{p_{\theta'}\left(\boldsymbol{a}_t \mid \boldsymbol{s}_t\right)}, 1 - \varepsilon, 1 + \varepsilon\right) A^{\theta'}\left(\boldsymbol{s}_t, \boldsymbol{a}_t\right) \right) \end{split}$$



Background and Motivation

System dynamics:

- 1. Training performance from different devices with different co-running tasks. (Raspberry PI & stress-ng)
- 2. The communication with local (China) and overseas (USA) edges to the same cloud. (Data from Alibaba Cloud)



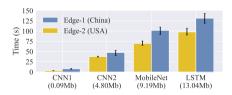


Figure: Edge-to-cloud communication time in different regions

Figure: Training time and energy of Raspberry Pi

How synchronization scheme affects HFL:

- System setting: an Alibaba cloud server, 5 laptops as edges, and 50 Raspberry Pi as devices.
- Var-Freq A: Cluster devices under the edge by training speed. Increase the edge and cloud aggregation frequency of slower clusters.
- Var-Freq B: Based on Var-Freq A, reduce the aggregation frequency of fast devices with high energy consumption.

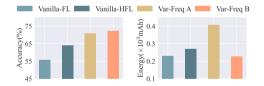


Figure: Accuracy and energy within different frameworks of MNIST

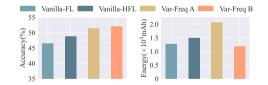


Figure: Accuracy and energy within different frameworks of Cifar-10 $% \left({{\left[{{{\rm{C}}} \right]}_{{\rm{C}}}}_{{\rm{C}}}} \right)$

Observation1

- The time and energy consumption during FL training is dynamic.
- The edge-to-cloud communication time varies from one region to another.

Observation2

- Changing the aggregation frequency of each edge and device after clustering can improve the training performance.
- A reasonable aggregation frequency can maximize model accuracy and energy efficiency.

How to find the right frequency in dynamic and heterogeneous systems?

- 2. Background and Motivation
- 3. The Design of Hwamei
- 4. Evaluation
- 5. Conclusion

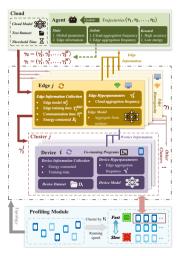


Figure: Overview of Hwamei

Overview:

- Cluster the devices by profiling module.
- Agent deployed on the cloud collects information from edges.
- Agent assigns aggregation frequency to edges and devices.

Profiling module:

- All devices run the profiling task.
- Devices get $V_i = [T_i^{pro} E_i^{pro}], i \in \{1, 2, ..., N\}.$
- Cluster the devices by V_i using *k*-Means algorithm.

The Desgin of Hwamei

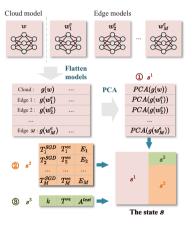


Figure: Composition of the state

State:

• Model parameters:

$$s^1 = PCA\{[g(w)^T \ g(w_1^e)^T \ g(w_2^e)^T \ \dots \ g(w_M^e)^T]^T\}$$

• Time and energy consumption:

$$oldsymbol{h}_j = [T_j^{SGD} \ T_j^{ec} \ E_j]^T$$

 $oldsymbol{s}^2 = [oldsymbol{h}_1 \ oldsymbol{h}_2 \ \dots \ oldsymbol{h}_M]^T$

• Global information:

$$\boldsymbol{s}^3 = [k \ T^{re} \ A^{test}]$$

• Splice:

$$s = cat\{(s_1, cat\{(s_3, s_2), dim = 0\}), dim = 1\}$$

Action:

• The aggregation frequency $\gamma_1 = \{\gamma_1^1, \gamma_1^2, \dots, \gamma_1^M\}$ and $\gamma_2 = \{\gamma_2^1, \gamma_2^2, \dots, \gamma_2^M\}.$

Reward:

• The reward after the *k*-th cloud communication:

$$r_k = A^{test}(k) - A^{test}(k-1) - \epsilon E(k)$$

Workflows:

- 1. Initialize the parameters.
- 2. Train HFL for several rounds and train PCA modules.
- 3. The agent makes decision and push (s_k, a_k, r_k, s_{k+1}) to memory.
- 4. Repeat step 3 until $T^{re} < 0$.
- 5. Update the agent and clean the memory.

Algorithm 1 Arena's Training Process
1: Initialize the topology by profiling module;
2: Initialize threshold time T , remaining time $T^{re} = T$,
global model $w(0)$, round of cloud aggregations $k = 0$;
3: Train once cloud aggregation by given aggregation fre-
quencies, get $w(1)$, $w_i^e(1)$, and record T^{use} ;
4: Train PCA module by $w(1)$ and $w_j^e(1)$;
5: Update $T_{init}^{re} = T^{re} - T^{use}$; k++;
6: for 1 to Ω do
7: while true do
8: Observe state s_k ;
9: Choose actions a_k , that is γ_1 and γ_2 ;
10: Train HFL by γ_1 and γ_2 , record T^{use} ;
11: Get reward r_k and s_{k+1} , update $T^{re} = T^{re} - T^{use}$;
12: Push (s_k, a_k, r_k, s_{k+1}) to agent memory; $k++$;
13: if $T^{re} < 0$ then
14: Set $k = 1, T^{re} = T^{re}_{init}$;
15: break
16: end if
17: end while
 Update the agent and clear agent memory;
19: end for

Figure: Training process of Hwamei

- 2. Background and Motivation
- 3. The Design of Hwamei

4. Evaluation

5. Conclusion

Evaluation

Settings:

- Testbed: Raspberry Pi, Laptop, Alibaba Cloud.
- Dataset: MNIST, Cifar-10 with CNN.
- Benchmarks: Vanilla-FL, Vanilla-HFL, Favor, Share, Hwamei.
- Heterogeneity:
 - 1. System: 5 categories CPU utilization from 10% to 80%.
 - 2. Edge communication: Sampling from Real edge communication time.
 - 3. Data distribution: Label non-IID.



Figure: Training the DRL agent of Hwamei.

Evaluation

Training performance:

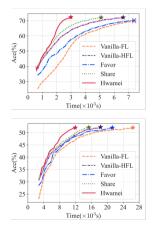


Figure: Accuracy of testing MNIST & Cifar-10

Impact of profiling module:

TABLE I	
PERFORMANCE OF CLUSTER VS NON-CLUSTER	ON HWAMEI

	Time	Cluster		non-Cluster	
		Accuracy	Energy	Accuracy	Energy
MNIST	2100s	63.0%	114mAh	61.7%	126mAh
	2400s	67.6%	154mAh	65.2%	172mAh
	2700s	69.4%	180mAh	67.9%	212mAh
	3000s	72.3%	226mAh	70.8%	253mAh
Cifar-10	7500s	45.2%	548mAh	44.1%	619mAh
	9000s	49.0%	704mAh	47.8%	843mAh
	10500s	50.3%	957mAh	49.1%	1124mA
	12000s	52.1%	1190mAh	50.7%	1358mA

Result

- Hwamei saves 51.1% and 34.7% time in average.
- The profiling module enables the system to fully use device resources.

Evaluation

Training with different threshold time:

Training with different non-IID levels:

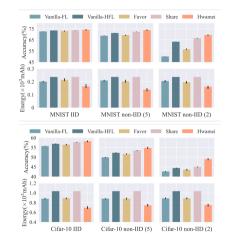


Figure: Accuracy and energy within different times Figure: Accuracy and energy within different non-IID

- 2. Background and Motivation
- 3. The Design of Hwamei

4. Evaluation

5. Conclusion

Conclusion

- 1. We propose an intelligent HFL synchronization scheme based on DRL, which can co-optimize the model performance and training efficiency.
- 2. We develop an HFL testbed with Raspberry Pi and Alibaba Cloud and collect the real-world data.
- 3. We conduct extensive experiments comparing with the state-of-the-arts.

Thank you for your attention! Questions?