Tomtit: Hierarchical Federated Fine-Tuning of Giant Models based on Autonomous Synchronization Tianyu Qi, Yufeng Zhan, Peng Li and Yuanging Xia

Tianyu Qi qitianyuqty@163.com

School of Automation Beijing Institute of Technology

23rd May, 2024

1. Introduction

- 2. Background and Motivation
- 3. Design of Tomtit

4. Evaluation

5. Conclusion

Introduction

Development of large models:

Figure: Large models are popular now

- Large models in various fields start to to evolve into giant ones to pursuit emergent abilities.
- Fine-tuning the pre-trained models using data of specific tasks is a typical usage pattern now.
- Due to the privacy security, fine-tuning for specific tasks is usually short of data.

Introduction

FL disadvantages:

- Communication difficulty
- Not conducive to large-scale deployment

HFL advantages:

Figure: Overview of HFL

- Optimized communication
- Improve scalability

Introduction

Hierarchical federated learning (HFL):

Figure: Overview of HFL

Training of HFL:

- Local training: Models deployed on devices
- Edge aggregation: Devices upload models to edges
- Cloud aggregation: Edges upload models to cloud Challenge:
 - Device heterogeneity
 - Edge environment is dynamic
 - Distribution of data changes

Our Work

How to design a fine-tuning system that can accelerate federated fine-tuning and improve energy efficiency?

1. Introduction

2. Background and Motivation

3. Design of Tomtit

4. Evaluation

5. Conclusion

Hierarchical federated learning:

• Local SGD(Device *j*):

$$f_j(w_j) = \frac{1}{|\mathcal{D}_j|} \sum_{(x,y) \in \mathcal{D}_j} f_j(w_j, x, y)$$

• Edge aggregation(Edge *i*):

$$w_i^e = \sum_{j=1}^{N_i} \frac{\left|\mathcal{D}_j\right| w_j}{\sum_{j=1}^{N_i} \left|\mathcal{D}_j\right|}$$

• Cloud aggregation:

$$w = \sum_{i=1}^{M} \frac{|\mathcal{D}_i| w_i^e}{\sum_{i=1}^{M} |\mathcal{D}_i|}$$

Hierarchical federated fine-tuning:

- Freeze backbone network parameters, fine-tune the adapter locally.
- During aggregation, only adapter parameters are uploaded for aggregation.

Figure: Framework of hierarchical federated fine-tuning

Background and Motivation

Influence of adapters:

Figure: Overhead of adapter-based fine-tuning

- Adapters can be customized by adjusting depth and width
- ٠ Different adapter configurations, leading to varying local training time, communication time,
- Test on a transformer-based Bert model trained with the T-Rex dataset.

Influence of device heterogeneity:

Figure: Computing capability statistics under different edges

- Measure the computing capability by Measuring Broadband America (MBA) and AlBenchmark.
- The distribution indicate heterogeneity among devices at network and computation capability.
- The distribution between areas suggests heterogeneity between edges.

Observation 1

Hierarchical federated fine-tuning systems have strong heterogeneity.

TY.Qi (Beijing Institute of Technology)

Tomtit: Hierarchical Federated Fine-Tuning of Giant Models based on Autonomous Synchronization

Background and Motivation

Influence of model synchronization frequency:

Figure: Accuracy and efficiency of different schemes

- System setting: A testbed consisting of 50 Raspberry Pis as devices and 5 laptops as edges.
- Aggre-A: Synchronization frequencies of devices whose CPU utilization is less than 30% are set to 5, and others are 1.
- Aggre-B: Conduct a fine-grained control by setting synchronization frequencies proportional to device CPU utilization.

Observation 2

Applying HFL federated fine-tuning by a sophisticated synchronization scheme exists a large optimization space.

Centralized control challenges:

Figure: Overhead of centralized control in large-scale systems

- Almost all works are based on centralized control, which needs to collect global system states and run complex algorithms.
- The number of system parameters collected for centralized control linearly increases as the growth of devices.
- The time needed for decision making also increases to an unaffordable level.

Observation 3

We need to design a distributed solution to address the bottleneck incurred by centralized control.

TY.Qi (Beijing Institute of Technology)

1. Introduction

2. Background and Motivation

3. Design of Tomtit

4. Evaluation

5. Conclusion

Design of Tomtit

Overview of Tomtit:

Framework:

- Tomtit use a distributed synchronization control based on Multi-Agent Reinforcement Learning.
- Deploy a control module called an agent in each edge server, collecting information from server and devices.
- Each agent determines a synchronization frequency as the action for each associated device.

Design of Tomtit

Overview of Tomtit:

Advantages:

- High accuracy: Aim to train adapters within a limited time to enhance model accuracy.
- Low energy consumption: Minimize the average energy consumption of devices as much as possible.
- Autonomy: Enable each agent to make independent and efficient decisions.

Figure: Composition of the observation and global state

The observation:

- Collect the observation for actor networks in the edges.
- Model parameters:

$$o_i^1(k) = \text{PCA}\{[g(w(k))^T \ g(w_1(k))^T \dots g(w_{N_i}(k))^T]^T\}$$

• Time and energy consumption:

$$\boldsymbol{\varrho}_{i}^{j}(k) = [Ts_{i}^{j}(k-1) \ E_{i}^{j}(k-1)]$$

$$\boldsymbol{o}_i^2(k) = [\boldsymbol{\varrho}_i^1(k) \ \boldsymbol{\varrho}_i^2(k) \dots \boldsymbol{\varrho}_i^{N_i}(k)]^T$$

Global information:

$$o_i^3(k) = [T^{re}(k) \ A^{test}(k-1)]$$

Splice:

$$\boldsymbol{o}_i(k) = \operatorname{cat}\{(\boldsymbol{o}_i^1(k), \operatorname{cat}\{(\boldsymbol{o}_i^3(k), \boldsymbol{o}_i^2(k)), \dim = 0\}), \dim = 1\}$$

Design of Tomtit

The global state:

Figure: Composition of the observation and global state

Enhancement

- Separate the actor and cirtic network of the agent
- Collect the global state for critic networks in the cloud.
- Model parameters:

$$s^{1}(k) = PCA\{[g(w(k))^{T} \ g(w_{1}^{e}(k))^{T} \dots \ g(w_{M}^{e}(k))^{T}]^{T}\}$$

• Time and energy consumption:

$$\boldsymbol{\varrho}_i(k) = [Ts_i(k-1) \ Tc_i(k-1) \ E_i(k-1)$$
$$\boldsymbol{s}^2(k) = [\boldsymbol{\varrho}_1(k) \ \boldsymbol{\varrho}_2(k) \dots \boldsymbol{\varrho}_M(k)]^T$$

• Global information:

$$s^{3}(k) = [k \ T^{re}(k) \ A^{test}(k-1)]$$

Splice:

$$s(k) = \operatorname{cat}\{(s^{1}(k), \operatorname{cat}\{(s^{3}(k), s^{2}(k)), \dim = 0\}), \dim = 1\}$$

Action:

 In each round of cloud communication, agent *i* determines its action *a_i(k) = {γ_{i,k}, γ¹_{i,k}, γ²_{i,k}, ..., γ^{N_i}_{i,k}}*.

Reward:

• Denote the reward given to agent *i*, where $Q(u) = \Upsilon^u$:

$$r_i(k) = Q(A^{test}(k)) - Q(A^{test}(k-1)) - \epsilon E_i(k)$$

Workflows:

- 1. Initialize the parameters;
- 2. Train HFL for several rounds and train PCA modules;
- 3. Agents make decision and choose action, push $(s(k), o_i(k), a_i(k), r_i(k), s(k+1), o_i(k+1))$ to the memory;
- 4. Repeat step 3 until $T^{re}(k) < 0$;
- 5. Update each $Agent_i$ by state-action-reward in the agent's memory pool.

Alg	orithm 1 Tomtit's Training Process
1:	Initialize round of cloud aggregations $k = 0$, threshold
	time T, remaining time $T^{re}(0) = T$, global model $w(0)$,
	Agent _i for edge $i, i \in \mathbb{M}$;
2:	Train several cloud aggregation by given aggregation
	frequencies, get $w(1)$, $w_i^e(1)$, $w_j(1)$, and record $T^{use}(1)$;
3:	Train PCA module by $w(1)$, $w_i^e(1)$, and $w_j(1)$;
4:	Update $T_{init}^{re} = T^{re}(1) - T^{use}(1); k++;$
5:	for 1 to Ω do
6:	Get $s(k)$ and $o_i(k)$ for $Agent_i$, $i \in \mathbb{M}$;
7:	while true do
8:	$a_i(k) = Agent_i.choose_action(o_i(k)), i \in \mathbb{M};$
9:	Train HFL by $\{a_i(k)\}_{i\in\mathbb{M}}$, record $T^{use}(k)$ and up-
	date $T^{re}(k) = T^{re}(k-1) - T^{use}(k);$
10:	$s(k+1), o_i(k+1), r_i(k) = Agent_i.step(), i \in \mathbb{M};$
11:	$\tau_i^k = (s(k), o_i(k), a_i(k), r_i(k), s(k+1), o_i(k+1));$
12:	$Agent_i.push(\tau_i^k), i \in \mathbb{M}; k++;$
13:	if $T^{re}(k) < 0$ then
14:	Set $k = 1, T^{re}(k) = T^{re}_{init};$
15:	break
16:	end if
17:	end while
18:	$Agent_i.PPO_update_\&_clear(), i \in \mathbb{M};$

Convergence:

Assumption

- The loss function is L-smooth and the Lipschitz constant L > 0, i.e., $\|\nabla f(x) \nabla f(y)\| \le L \|x y\|$.
- The estimated stochastic gradient is unbiased for devices, i.e., $\mathbb{E}\left[\left\|\tilde{\nabla}f_j(w_j) \nabla f(w)\right\|^2 \mid w\right] \leq \sigma^2$.

Convergence

• We can get the model updates formula as

$$w(k+1) = w(k) - \eta \sum_{i \in \mathbb{M}} \frac{N_i}{N} \frac{1}{N_i} \sum_{\alpha=0}^{\gamma_{i,k}-1} \sum_{j \in \mathbb{N}_i} \sum_{\beta=0}^{\gamma_{i,k}^j - 1} \tilde{\nabla} f_j (w_j (k, \alpha, \beta))$$

• The relationship between the models w(k) and w(k+1) is

$$\mathbb{E}[f(w(k+1))] - \mathbb{E}[f(w(k))] \leq \frac{L}{2} \mathbb{E} \left\| w(k+1) - w(k) \right\|^2 + \mathbb{E} \left\langle \nabla f(w(k)), w(k+1) - w(k) \right\rangle$$

Theorem

 After subjecting our refined frequency variation method to a round of cloud communication, the convergence bound is

$$\mathbb{E}[f(w(k+1))] - \mathbb{E}[f(w(k))] \leq \frac{L^2 \eta^3}{4} \widetilde{\gamma}_1 \widetilde{\gamma_2} \left((\widetilde{\gamma_1} - 1) + \frac{M}{N} \widetilde{\gamma_1} (\widetilde{\gamma_2} - 1) \right) \sigma^2 + \frac{L \eta^2}{2} \frac{1}{N} \widetilde{\gamma_1} \widetilde{\gamma_2} \sigma^2 - \frac{\eta}{2} \widetilde{\gamma_1} \widetilde{\gamma_2} \mathbb{E} \|\nabla f(w(k))\|^2,$$

where

$$P = 1 - \frac{L^2 \eta^2 \gamma_{i,k}^j (\gamma_{i,k}^j - 1)}{2} - \frac{L^2 \eta^2 \widetilde{\gamma_2}^2 \gamma_{i,k}^j (\gamma_{i,k} - 1)}{2} - L \eta \gamma_{i,k} \gamma_{i,k}^j.$$

1. Introduction

- 2. Background and Motivation
- 3. Design of Tomtit

4. Evaluation

5. Conclusion

Settings:

- Testbed: Edges are 5 (default) or 10, and devices are 20, 50 (default) and 100.
- Datasets: MNIST, Cifar-10, and Cifar-100.
- Baselines: Vanilla-FL, Vanilla-HFL, FedProx, FedNova, Share, Moon
- Heterogeneity:
 - 1. Different adapter settings for each device.
 - 2. Sample bandwidth from MobiPerf and apply to the edge.
 - 3. The data set is segmented in label non-IID and Dirichlet non-IID.

The performance of DRL training:

Figure: The reward of training the MARL agent

Figure: Accuracy v.s. time of different FL methods

The performance with different threshold time:

Figure: Performance under different training time

The performance with different non-IID levels:

Figure: Performancesumption under different non-IID levels

Scalability:

• Change various scale configurations about the number of edges and devices.

					PE	RFORM	IANCE AT	DIFFE	RENT SC	ALES							
Scale [Edges, Devices]	Data	Van Acc (%)	Illa-FL Energy (mAh)	Vani Acc (%)	la-HFL Energy (mAh)	Fe Acc (%)	dProx Energy (mAh)	Fe Acc (%)	INova Energy (mAh)	Acc (%)	avor Energy (mAh)	Acc (%)	hare Energy (mAh)	Acc (%)	loon Energy (mAh)	78 Acc (%)	omtit Energy (mAh)
[5, 20]	MNIST	51.8	218.3	58.9	268.7	55.3	225.3	57.4	226.8	53.1	209.5	62.2	268.7	60.9	228.1	64.5	148.3
	CIFAR-10	43.3	1258.8	46.0	1453.2	45.7	1240.3	45.8	1251.6	44.9	1289.2	47.8	1453.2	46.1	1247.4	48.4	781.5
	CIFAR-100	24.5	5008.3	28.4	6093.6	27.5	5109.7	27.9	5153.6	25.1	5220.7	29.2	6093.6	29.0	5111.6	31.5	3844.5
[5, 50]	MNIST	55.7	220.3	63.8	271.0	59.6	217.5	62.1	232.1	57.6	244.7	70.2	271.0	66.7	229.6	73.8	152.7
	CIFAR-10	46.5	1270.4	48.8	1494.8	47.5	1240.0	48.1	1249.3	47.4	1306.8	50.9	1494.8	49.4	1258.8	52.9	758.6
	CIFAR-100	26.3	5112.6	30.3	6014.8	28.6	5217.5	29.3	5087.4	26.8	5248.8	32.0	6014.8	31.4	5176.8	33.2	3985.6
[5, 100]	MNIST	48.1	231.8	54.2	270.8	52.1	218.9	52.9	206.9	50.8	228.7	56.3	270.8	55.7	222.5	56.3	179.5
	CIFAR-10	40.2	1249.2	44.1	1437.6	42.5	1286.3	43.4	1256.7	42.4	1251.2	45.8	1437.6	43.5	1248.5	45.2	795.4
	CIFAR-100	22.1	5023.1	27.0	5983.7	25.2	5154.2	26.1	5169.3	22.9	5201.5	28.1	5983.7	27.8	5281.4	30.2	4021.0
[10, 100]	MNIST	48.1	231.8	54.9	270.8	52.1	218.9	52.9	206.9	50.8	228.7	57.0	270.8	55.7	222.5	58.6	161.2
	CIFAR-10	40.2	1249.2	44.3	1437.6	42.5	1286.3	43.4	1256.7	42.4	1251.2	45.6	1437.6	43.5	1248.5	46.9	781.8
	CIFAR-100	22.1	5023.1	27.6	5983.7	25.2	5154.2	26.1	5169.3	22.9	5201.5	28.5	5983.7	27.8	5281.4	30.6	3912.7

Dynamic system environment:

• change data distribution and CPU utilization of devices.

		10%	30%	50%
	MNIST	73.71%(-0.21%)	73.45%(-0.37%)	73.12%(-0.60%
CPU	CIFAR-10	52.64%(-0.29%)	52.35%(-0.58%)	52.11%(-0.82%
	CIFAR-100	32.92%(-0.31%)	32.76%(-0.47%)	32.44%(-0.79%
	MNIST	73.15%(-0.67%)	72.91%(-0.91%)	72.50%(-1.21%
Data	CIFAR-10	52.27%(-0.66%)	51.68%(-1.25%)	51.49%(-1.44%
	CIFAR-100	32.85%(-0.38%)	32.11%(-1.12%)	31.70%(-1.53%
	MNIST	72.54%(-1.28%)	72.05%(-1.77%)	71.86%(-1.94%
CPU+Data	CIFAR-10	52.03%(-0.90%)	51.30%(-1.63%)	50.96%(-1.97%
	CIFAR-100	32.49%(-0.74%)	31.88%(-1.35%)	31.24%(-1.99%

TABLE II

The impact of agent design:

- 1.Tomtit-G: Concatenating observations as the global state;
- 2.Tomtit-R: replace $Q(u) = \Upsilon^u$ with Q(u) = u in the reward.

State dimension:

• Change the dimensionality of PCA of the state.

Figure: Impact of different principal component

1. Introduction

- 2. Background and Motivation
- 3. Design of Tomtit

4. Evaluation

5. Conclusion

Conclusion

- We propose a hierarchical federated fine-tuning system, which can achieve higher model accuracy and lower energy consumption when fine-tuning models.
- We design a distributed algorithm based on MARL to determine the aggregation frequency of edges and devices, and prove convergence.
- We conduct extensive experiments comparing with the state-of-the-arts in a real system.

Thank you for your attention! Questions?